Whatver
This commit is contained in:
168
Day 14/decode.py
168
Day 14/decode.py
@@ -1,13 +1,13 @@
|
||||
#!/usr/bin/python
|
||||
|
||||
import math
|
||||
import sys
|
||||
import random
|
||||
|
||||
c = int("2A4C9AA52257B56837369D5DD7019451C0EC04427EB95EB741D0273D55", 16)
|
||||
n = int("0D8A7A45D9BE42BB3F03F710CF105628E8080F6105224612481908DC721", 16)
|
||||
t = int("1398ED7F59A62962D5A47DD0D32B71156DD6AF6B46BEA949976331B8E1", 16)
|
||||
|
||||
# print(len(hex(t)[2:])*4)
|
||||
|
||||
def linear_diophantine_equation(a, b):
|
||||
if b > a:
|
||||
return linear_diophantine_equation(b, a)
|
||||
@@ -39,161 +39,17 @@ def is_square_num(n):
|
||||
def is_int(n):
|
||||
return int(n) == n
|
||||
|
||||
# m*m - k*n = c
|
||||
# (m*m)/c - (k*n)/c = 1 k' = k * c
|
||||
# m * m * c^-1 - k' * n = 1
|
||||
def is_nth_root_num(a, b):
|
||||
c = a**(1/float(b))
|
||||
return abs(math.pow(c, b) - a) < 0.000001
|
||||
|
||||
# c = m*m - k*n
|
||||
# c = 1*x - k*n mit x = m^2
|
||||
def log(a, b):
|
||||
return math.log(a) / math.log(b)
|
||||
|
||||
# c = gcd(m, n)
|
||||
|
||||
d, x, y = linear_diophantine_equation(n, c)
|
||||
print(d, x, y)
|
||||
|
||||
for i in range(-10, 10):
|
||||
print(i, test_solution(y + i * t))
|
||||
# h = hex(y)[2:]
|
||||
# print(''.join([chr(int(h[i:i+2], 16)) for i in range(len(h))]))
|
||||
|
||||
# print(y * c + x * n)
|
||||
|
||||
# y1 * c + x1 * n = 1
|
||||
# y2 * m*m + x2 * n = 1
|
||||
|
||||
# y2 * m*m + x2 * n = y1 * c + x1 * n
|
||||
# y2 * m*m + (x2-x1)*n = y1 * c
|
||||
# -y1*c + (x2-x1)*n = y2*m*m
|
||||
|
||||
lcm = c * n
|
||||
while not is_square_num(lcm):
|
||||
lcm += n
|
||||
|
||||
print(hex(lcm))
|
||||
print(is_square_num(lcm))
|
||||
|
||||
# tmp = -1 * y * c - x * n
|
||||
#
|
||||
# solution = tmp + n*n
|
||||
# while not is_square_num(solution) and not test_solution(math.sqrt(solution)):
|
||||
# solution += n
|
||||
#
|
||||
# if is_square_num(solution):
|
||||
# print(len(hex(math.sqrt(solution))[2:]), hex(int(math.sqrt(solution))))
|
||||
#
|
||||
|
||||
#
|
||||
# print(is_square_num(x))
|
||||
# print(test_solution(x))
|
||||
# # print(hex(d))
|
||||
|
||||
# ggT(m², n) = ggT(c, n)
|
||||
|
||||
# print(gcd(c,n))
|
||||
|
||||
# gcd(m**2, n) = 1
|
||||
#
|
||||
# 1 = x*m**2 + y*n
|
||||
# 1 = x*m**2*c + y*n
|
||||
#
|
||||
# x1*m**2 + y1*n = x2*m**2*c + y2*n
|
||||
# 0 = m**2*x2*c-x1*m**2 + (y1-y2)*n
|
||||
#
|
||||
# gcd(m**2*c, n) = gcd(m**2, n)
|
||||
#
|
||||
# print(gcd(c, n))
|
||||
|
||||
# m = int("c20cd4b471c96cc2eaab1d1c6e33494219679ae97e48506e311ddbba35", 16)
|
||||
# print(m**2 % n - c)
|
||||
# print(test_solution(m))
|
||||
|
||||
# mult_inverse = multiplicative_inverse(c, n)
|
||||
#
|
||||
# d, x, y = linear_diophantine_equation(mult_inverse, n)
|
||||
# print(d,x,y)
|
||||
#
|
||||
# print(mult_inverse*x - y*n)
|
||||
#
|
||||
# print(is_square_num(x))
|
||||
# print(is_square_num(y))
|
||||
|
||||
# print(is_square_num(c))
|
||||
def ascii(n):
|
||||
h = hex(n)[2:]
|
||||
return ''.join([chr(int(h[i:i+2], 16)) for i in range(0, len(h), 2)])
|
||||
|
||||
# n > t > c
|
||||
|
||||
# m = flag
|
||||
|
||||
# m**2 % n = x**2
|
||||
# m**2 + k*n = c
|
||||
# m % n = x
|
||||
# m - k*n = x
|
||||
# m = x + k * n
|
||||
|
||||
# x = int(math.sqrt(c))
|
||||
#
|
||||
# while not test_solution(x):
|
||||
# x += n
|
||||
# print(hex(x), hex(((x**2)%n)-c))
|
||||
# print(x)
|
||||
#
|
||||
#
|
||||
# d, x, y = linear_diophantine_equation(mult_inverse, mult_inverse*n)
|
||||
# print(hex(d + 6*t - 2*c), test_solution(d + 6*t - 2*c))
|
||||
|
||||
# x = math.sqrt(n)
|
||||
# print(x)
|
||||
#
|
||||
# print(test_solution(c * math.sqrt()))
|
||||
|
||||
# print(test_solution(math.floor(math.sqrt(c * n))))
|
||||
|
||||
# c = (m**2) % n
|
||||
# c = m*m - k*n
|
||||
# 1 = (m**2)/c - (k*n)/c
|
||||
# 1 = (m**2)/c - k*(n/c)
|
||||
|
||||
# k = 1
|
||||
# test = k * n / c
|
||||
# while test != math.floor(test):
|
||||
# k += 1
|
||||
# test = k * n / c
|
||||
#
|
||||
# print(k, test)
|
||||
|
||||
|
||||
# x = m*m
|
||||
# c = x % n
|
||||
# c = x - k*n
|
||||
# c = k*n+x
|
||||
# x ~ (48 56 31 38 2d) ^ 2
|
||||
# m_guess = int("485631382d616161612d616161612d616161612d616161612d61616161", 16)
|
||||
# x_guess = m_guess ** 2
|
||||
# k_guess = (c - x_guess) / n
|
||||
#
|
||||
# i = 0
|
||||
# while not test_solution(m_guess):
|
||||
# m_guess += 1
|
||||
# i += 1
|
||||
#
|
||||
# print(i, m_guess)
|
||||
|
||||
# print(test_solution(math.sqrt(c + n)))
|
||||
|
||||
# print(math.sqrt(c))
|
||||
|
||||
# c = x**2
|
||||
# m**2 % n = x**2
|
||||
# m % n = x
|
||||
|
||||
# i = 0
|
||||
# solutioni = 0
|
||||
# while i < 100:
|
||||
# i += 1
|
||||
# if test_solution(i):
|
||||
# print(i, i**2%n)
|
||||
|
||||
# 4**2 % 13 = 3
|
||||
# 9**2 % 13 = 3
|
||||
# 17**2 % 13 = 3
|
||||
# 22**2 % 13 = 3
|
||||
# 30**2 % 13 = 3
|
||||
# gcd(m, n) = gcd(m², n) = gcd(c, n) = gcd(t, n) = gcd(t, c) = gcd(t*c, n) = 1
|
||||
# m² ≡ c (mod n)
|
||||
|
||||
Reference in New Issue
Block a user